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Abstract

A numerical analysis is presented of free surface pro®les, Marangoni convection and the temperature distribution
in electrostatically levitated droplets. The analysis is based on the boundary element solution of electric potential

outside the droplet, the weighted residuals formulation of the free surface balance equation involving electrostatic
stresses, surface tension and gravity, and the ®nite element solution of the internal ¯uid ¯ow and temperature
distribution in the electrostatically deformed droplets. Numerical simulations are carried out for several di�erent

materials and various operating conditions. Results show that an applied electrostatic ®eld generates a normal stress
distribution along the droplet surface, which, combined with surface tension, causes the droplet to deform into an
ellipsoidal shape in microgravity and into the shape of a blob with the lower side being ¯atter under terrestrial

conditions. Laser heating induces a non-uniform temperature distribution in the droplet, which in turn produces
recirculating convection in the droplet. For the cases studied, Marangoni convection is the predominant mode and
buoyancy e�ects are negligible. It is found that there is a higher temperature gradient and hence stronger
Marangoni convection in droplets with higher melting points which require more laser power. The internal

recirculating ¯ow may be reduced by more uniform laser heating. During undercooling of the droplet with heating
turned o�, both temperature and ¯uid ¯ow ®elds evolve in time, such that the temperature gradient and the
tangential velocities along the droplet surface subside in magnitude and reverse their directions. 7 2000 Elsevier

Science Ltd. All rights reserved.

1. Introduction

In the upcoming International Space Station, a
suite of containerless processing systems will be
installed for the fundamental study of nucleation

and solidi®cation phenomena and the measurement
of thermophysical properties of a wide variety of
materials [1±3]. The concept of containerless proces-

sing is to levitate a working sample, melt or solid,

in air against gravity so that it is free from wall re-

lated contamination. In the microgravity environ-
ment created in space vehicles, the concept is
exploited to con®ne the sample from drifting in
space. Without contact with a solid wall, a levitated

droplet can be allowed to cool far below its melting
point but still remains liquid, which is called under-
cooling. With a substantial undercooling, simul-

taneous nucleation may occur in the melt, followed
by grain growth, thereby producing a solid with a
microstructure consisting of extremely ®ne-sized

grains. A containerless processing system also o�ers
a uniquely useful means by which the thermophysi-
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cal properties of high melting point and corrosive

melts can be measured without interference from

the container walls. Moreover, it seems to be the

only technique for measuring the physical properties

of the undercooled melts [2].

Electrostatic levitation, developed based on the prin-

ciple of electrostatics, is one of the containerless pro-

cessing systems designed for these microgravity

applications. The speci®c design of the system and its

testing have been detailed elsewhere [1] and the basic

idea is sketched in Fig. 1(a). A droplet is positively

charged and immersed in an electric ®eld generated by

a group of electrodes that are at di�erent potentials.

This electric ®eld interacts with the positive charges on

the droplet to give rise to an electrostatic force, which

is in the same direction as the electric ®eld. If an

appropriate combination of the electric ®eld and

charges is chosen, the electrostatic force (or the Cou-

lomb force) can be strong enough to support the

weight of the droplet in normal gravity. In practical

design, an additional feedback control system is also

used to accurately position the droplet and stabilize

the levitation process [1]. External heating must be

supplied to heat or melt the levitated samples. This is

Nomenclature

a radius of a sphere
C geometric coe�cient resulting from

boundary integral formulation

Cp heat capacity
E0 electric ®eld
E(k) elliptical integral of the second kind

F force vector
g gravity constant
G green's function for free space

H Gaussian curvature
H, G global coe�cient matrices of BE formu-

lation
î unit vector of ith component

k thermal conductivity
K(k) elliptical integral of the ®rst kind
Ma Marangoni number, Ma � �@g=@T ��Tmin

ÿTmax�adrCp=mk
n �nr, nz� outward normal, its r and z components
Po pressure constant

Pr Prandtl number, Pr � mCp=k
Q net charge on the droplet
Qc critical charge

Qo laser beam heat ¯ux constant
r, r point vector and r coordinate in cylindri-

cal coordinates
R radial coordinate in spherical coordi-

nates with origin at the center of the
unformed droplet

Ra Rayleigh number, Ra � r 2gCpba3d�Tmaxÿ
Tmin�=mk

Re Reynolds number, Re � rVmaxad=m
s dummy variable for surface integral

t tangential vector
T, T1, Tr temperature, temperature of surround-

ings, reference temperature
Tmax, Tmin maximum and minimum temperatures

DT di�erence between Tmax and Tmin

Vmax maximum velocity

u velocity
ẑ unit vector of z-direction
z z coordinate

zc center of mass along the z-axis

Greek symbols

b thermal expansion coe�cient
dij delta function
e0 permittivity of free surface or region

designated by O2

e emissivity
ep penalty parameter
@O boundary of computational domain

r gradient operator
f shape function
F electric potential

g surface tension
k geometric parameter for elliptical func-

tions

Z molecular viscosity
r density
y y-direction
se surface charge distribution
ss Stefan±Boltzmann constant
O computational domain
t stress tensor

Subscripts
d droplet

i the ith point
l laser beam
1 region inside the droplet

2 region outside the droplet

Superscripts
i the ith component

T matrix transpose
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achieved by either UV-rich high-pressure xenon arc

lamps or laser beams. The entire operation is carried
out in a high vacuum chamber to prevent gas break-
down. At present, a sample of approximately 200 mg

can be levitated electrostatically under earthbound
conditions and extensive testing is being made to study
the feasibility of its application in microgravity [3].

Electrostatic levitation has some attractive advan-
tages over levitation by other techniques, such as mag-

netic ®elds. Perhaps, one of the most important
advantages of electrostatic levitation is that, in prin-
ciple, it can support a wider range of materials includ-

ing metals, semiconductors and insulators, while
magnetic levitation is limited to electrical conductors

only. Also, for electrically conducting samples levitated
in vacuum, there will be no internal ¯ows that are
attributed to the application of the electric ®eld,

because the droplet maintains an equal potential over
the entire melt and thus the Maxwell stress inside the
sample is uniform [4±6]. This may be extremely im-

portant for some planned experiments involving the
measurement of certain thermophysical properties,

such as melt viscosity and surface tension by induced
droplet oscillation in microgravity. In contrast, vigor-
ous recirculating ¯ow occurs in melt droplets sup-

ported by magnetic levitation, particularly that
induced by surrounding coils intended for heating or

squeezing [7±12].
So far, very little information is available on the fun-

damental behavior of droplets levitated in electric ®elds

[1±3,13,14]. The existing work on electrostatic levita-
tion is primarily concerned with system design and the
feedback control mechanism [1±3]. There also have

been some analyses of an inviscid oscillation of
charged drops for simple electric ®eld con®guration

and shape stability [13,14]. Information about trans-
port phenomena in electrostatically levitated droplets is
very scarce, however. Experience with earthbound elec-

trostatic levitation has suggested that internal ¯uid
¯ow may occur in levitated drops [2,3]. While electro-

static forces are not responsible for an internal ¯ow in
a conducting sample, internal ¯ows can arise from
other sources. For example, under terrestrial con-

ditions, natural convection occurs due to a temperature
di�erence in the droplet. Since the droplet size is small,
surface tension driven ¯ow or Marangoni convection

may become important for the levitated droplets in
both normal and micro gravity. Also, an electric ®eld

induces a non-uniform distribution of electric pressure
along the surface of a droplet. As such, a droplet can-
not maintain a spherical shape in an electrical ®eld,

and its ®nal shape is determined as a result of a local
force balance along the free surface. Undoubtedly, an
understanding of these physical phenomena is of criti-

cal value for both the design of electrostatic levitation
systems and the planning of related experiments.

Fig. 1. Schematic representation of a positively charged melt

droplet levitated in an electrostatic ®eld: (a) leviation mechan-

ism; (b) laser heating arrangement.
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In this paper we study two critical issues concerning
the fundamental behavior of a droplet levitated in an

electrostatic ®eld, that is, the electrostatically induced
free surface deformations and thermally induced in-
ternal ¯uid ¯ows. Towards this end, a computational

methodology is developed for the prediction of the
electrostatic deformation of, and internal ¯uid ¯ows in
the droplets under terrestrial and microgravity con-

ditions. The motivation for normal gravity studies
comes from the fact that the actual device is developed
on earth and extensive ground-based experiments are

conducted before it is ®nally installed in the Inter-
national Space Station. In developing the compu-
tational algorithms, the boundary element method is
used for the solution of the electrostatic ®eld distri-

bution, and is coupled with the weighted residuals
method for an iterative solution of the equilibrium free
surface shapes of the levitated droplet. The tempera-

ture distribution and ¯uid ¯ow ®eld in the droplets are
calculated using the ®nite element method. Numerical
simulations are carried out for various conducting ma-

terials for electrostatic levitation experiments under
both earthbound and microgravity conditions.

2. Mathematical formulation

The problem under consideration is illustrated in
Fig. 1. A liquid sphere, charged positively, is sus-

pended in an electrostatic ®eld generated by two hori-
zontal, parallel electrodes placed far apart (Fig. 1(a)).
The droplet is heated by two laser beams in the areas

around the north and south poles (Fig. 1(b)). The
statement of the problem of drop shapes and internal
¯ows should include the formulations for the electric
®eld and the thermal and ¯uid ¯ow ®elds. The electric

®eld is described by the Maxwell equations, which for
the present problem simplify to a partial di�erential
equation involving only the electric potential. For an

electrically conducting droplet such as a molten silicon
or metal droplet, only the electric potential outside the
droplet is needed because the electric ®eld inside the

droplet is identically zero by the Gauss law [15]. Thus,
the equations governing the electric potential distri-
bution in the region outside the droplet may be written

as follows,

r 2F � 0 2 O2 �1�

F � F0 2 O1 \ O2 �2�

e0n � rF � ÿse 2 O1 \ O2 �3�

R@O1
se ds � ÿR@O1

e0n � rF ds � Q 2 O1 \ O2 �4�

F � ÿE0R cos y R41 �5�
with F0 being the unknown constant potential of the
surface of the droplet, which is calculated by the sur-
face integral representing charge conservation, as

expressed in Eq. (4). The last equation states the fact
that the applied electric ®eld is uniform and points to
the positive z-direction.

The mathematical description of the ¯uid ¯ow and
temperature distribution in the electrostatically levi-
tated melt droplet is given by the Navier±Stokes

equation and the thermal energy balance equation [16],
viz.,

r � u � 0 2 O1 �6�

r
@u

@ t
� ru � ru

� ÿrp� r � Z
ÿ
ru� ruT

�
ÿ rbg�Tÿ Tr �

2 O1

�7�

rCp
@T

@ t
� rCpu � rT � r � krT 2 O1 �8�

To solve the above ¯uid ¯ow and heat transfer
equations, mechanical and thermal boundary con-

ditions are needed. These boundary conditions describe
the physical constraints for the problem and are given
below,

ÿkn � rT � ess

ÿ
T 4 ÿ T 4

1
�ÿQoeÿr

2
l
=a 2

l

2 O1 \ O2

�9�

u � n � 0 2 O1 \ O2 �10�

t � t � n � dg
dT

t � rT 2 O1 \ O2 �11�

n � �s � n � 2gH 2 O1 \ O2 �12�
The last equation represents the ¯ow induced by sur-
face tension force that is a function of temperature
along the surface of the droplet. The last equation rep-

resents the normal stress balance along the surface of
the droplet.

3. Numerical solutions

3.1. Computation of electric ®eld

Information on electric ®eld distribution is required
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to solve for the Maxwell stress distribution along the
droplet surface, which contributes to the free surface

deformation. Since the potential inside the droplet is
constant, only the potential distribution outside needs
to be solved for. Among all the numerical techniques

available, the boundary element method is the most
attractive choice for the solution. This is because the
boundary condition at in®nity can be directly incor-

porated into the boundary integral formulation,
thereby reducing both computational time and storage
requirement.

Since the detailed numerical procedure by which the
boundary integral formulation is developed for the
problem has been described elsewhere [17±19], only an
outline is given here. To apply the boundary integral

method and incorporate the boundary condition at
R41, an intermediate variable F 0 �F� EoR cos y is
used and hence the boundary condition for F 0

becomes F 0 � 0 at R41: With this, the standard
procedure for employing the Green's function leads to
the following boundary integral for F 0,

C�ri �F 0�ri � �
�
@O2

F 0�n � rG�r dG�
�
@ �O2

F 0�n

� rG�r dG

�
�
@O2

G�n � rF 0 �r dG�
�
@ �O2

G�n � rF 0 �r dG �13�

where @O2 designates the surface of the droplet and
@ �O2 the boundary at in®nity. The Green's function
and its normal derivative are calculated by the follow-

ing expressions written for a cylindrical coordinate sys-
tem,

G�ri, r� � 4��������������������������������������
�ri � r� 2��zÿ zi � 2

q K�k� �14�

@G

@n
� 4��������������������������������������
�r� ri � 2��zÿ zi � 2

q �
nr
2r

�
E�k� ÿ K�k��

ÿ nr�rÿ ri � � nz�zÿ zi �
�rÿ ri � 2��zÿ zi � 2 E�k�

�
�15�

where k is the geometric parameter calculated by

k 2 � 4rir

�ri � r� 2��zi ÿ z� 2
�16�

The two integrals involving @ �O2 represent the contri-
bution from the boundary at R41 with the following
asymptotic behavior of G and F 0,

F 0�ri, R�1O�Rÿ2 �, @F
0

@n
�ri, R�1O�Rÿ3 � as

R41
�17�

G�ri, R�1O�Rÿ2 �, @G
@n
�ri, R�1O�Rÿ3 � as

R41
�18�

and also dG � R�y� dy, the two integrals each approach

zero as R41 [19],�
@ �O2

F�n � rG�r dG40 and

�
@ �O2

G�n � rF�r dG40 as R41
�19�

Thus, Eq. (13) simpli®es to a boundary integral that

involves only the surface of the droplet, @O2: The
boundaries of O2 can be discretized into small seg-
ments and the boundary integrals may be rewritten as

a sum of the integral contributions from individual
boundary elements. Further, with F � F 0 ÿ E0r cos y
substituted into the resultant equation, one has the fol-
lowing boundary integral formulation,

CiF�ri � �
XN
j�1

�
@O2, j

F
@G

@n
dG

�
XN
j�1

�
@O2, j

@F
@n

G dG�
XN
j�1

�
@O2, j

E0nzG dG

ÿ
XN
j�1

�
@O2, j

E0z
@G

@n
dGÿ CiE0zi �20�

where N is the total number of boundary elements

lying along the entire boundary of O2: Following the
standard boundary element discretization and noticing
that the potential on the surface is a constant, one

obtains the ®nal matrix form for the unknowns on the
surface of the droplet,

HfF0g � ÿG

�
@F
@n

�
� E0G

�
@z

@n

�
ÿHE0fzg �21�

where H and G are the coe�cient matrices involving

the integration of @G=@n and G over a boundary el-
ement. To complete the solution, Eq. (4) is discretized
and solved along with the above equation to obtain
the surface distribution of@F=@n and the constant F0:

3.2. Computation of free surface shapes

For the purpose of droplet shape calculations, the
normal stress balance equation (Eq. (12)) along the
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droplet surface can be more conveniently written in a
spherical coordinate system,

g
R 2 sin y

24ÿ2R 2 � R 2
y

�
sin y������������������

R 2 � R 2
y

q ÿ d

dy

0@ RRy sin y������������������
R 2 � R 2

y

q 1A35
� ÿPo ÿ rgR cos y� e0�n � rF� 2

2
�22�

In writing the above equation, we have also neglected

dynamic pressure and viscous contribution to facilitate
the computations [19]. This simpli®es the drop defor-
mation calculation by decoupling it from the ¯uid ¯ow

calculation. As discussed in Section 3.4, this simpli®ca-
tion is valid for the cases reported in this study. The
above equation may be solved using the Weighted Re-
siduals Method once the normal derivative of the po-

tential ®eld is known along the droplet surface. To
derive the weighted residuals formulation, the surface
of the droplet is discretized and de®ned by Ri, the dis-

tance between the surface node and the center of the
droplet. By multiplying the above equation by a
weighting function ci, followed by integration by

parts, one has the ®nal equation for the surface coordi-
nates R,

�p
0

8>><>>:g
RRy

dci

dy
� ci

ÿ
2R 2 � R 2

y

�
������������������
R 2 � R 2

y

q � R 2ci

�
P0

� rgR cos yÿ e0�n � rF� 2
2

�9>>=>>;sin y dy

� 0 �23�

where the variables R and Ry are calculated by

R �
XNe

i�1
ciRi and Ry �

XNe

i�1
Ri

dci

dx
dx
dy

The constraints of the volume conservation and the

center of the mass of the electrostatically levitated
droplet are needed to determine the droplet shape and
position. The two constraints are expressed as

1

a3d

�p
0

R3 sin y dy � 2 �24�

3

8a3d

�p
0

R4cos y sin y dy � zc �25�

where zc is the center of mass. The free surface may be
discretized into N elements and Eqs. (23)±(25) are inte-

grated numerically. The ®nal results are expressed as a
set of algebraic equations, which are then solved for

the unknowns Ri, K and zc [17,19].

3.3. Computation of thermal and ¯uid ¯ow ®elds

The governing equations for the thermal and ¯uid
¯ow ®elds along with the boundary conditions are
solved using the Galerkin ®nite element method. Since

details are well documented in many textbooks, only
an outline is given here. In essence, the computational
domain is ®rst divided into small elements. Within

each element, the dependent variables u, P and T are
interpolated by shape functions of f, c, and y,

ui�x, t� � fTUi�t� �26�

P�x, t� � cTP�t� �27�

T�x, t� ÿ Tr � yTT�t� �28�

where Ui, P and T are column vectors of element

nodal point unknowns.
Substituting the above equations into the governing

equations, we get the residuals R1, R2 and R3 which

represent the momentum, mass conversion and energy
equations respectively. The Galerkin form of the
Method of Weighted Residuals seeks to reduce these
errors to zero, and the shape functions are chosen the

same as the weighting functions. Following the pro-
cedures given in [17], the governing equations for the
¯uid ¯ow and heat transfer may be re-written as��

O1

c�î � rfT � d2if
T=r� dV

�
Ui

� ÿe
��

O1

ccT dV

�
P �29�

��
O1

rffT dV

�
dUi

dt
�
��

O1

rfu � rfT dV

�
Ui

ÿ
��

O1

�î � rf� d2if=r�cT dV

�
P

�
��

O1

Z�rf � rfT � 2d2if � fT=r 2� dV
�

Ui

�
��

O1

Z�î � rf�� ĵ � rfT� dV
�

U j

�
��

O1

rbfyT î � g
�

T �
�
@O1

n � �s � îf ds

�30�
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��
O1

rCpyyT dV

�
dT

dt
�
��

O1

rCpyu � ryT dV

�
T

�
��

O1

kry � ryT dV

�
T � ÿ

�
@O1

qTy ds

�31�

Once the form of shape functions f, y, and c is speci-

®ed, the integrals de®ned in the above equations can
be expressed by the matrix equation. The momentum
and energy equations may be combined into a single
global matrix equation,�

M 0
0 NT

��
ÇU
ÇT

�

�
24A�U� �K� 1

ep
EMÿ1

p ET B

0 DT�U� � LT

35
�
�

U
T

�

�
�

F
GT

�
�32�

Note that in constructing the above element matrix

equation, the penalty formulation has been applied,
and P in the momentum equation is substituted by
1
ep

Mÿ1
p ETU: The coe�cient matrices in the above

equation are de®ned by:

Mp �
�
O1

ccT dV

M �
�
O1

yyT dV

LT �
�
O1

kry � ryT dV

DT�U� �
�
O1

rCpyu � ryT dV

GT � ÿ
�
@O1

qTy ds

Kij �
��

O1

Z�rf � rfT � 2d2if � fT=r 2� dV
�
dij

�
�
O1

Z�î � rf�� ĵ � rfT� dV

NT �
�
O1

rCpyy
T dV

Ei �
�
O1

�î � rf� d2if=r�cT dV

A�U� �
�
O1

rfu � ryT dV

B �
�
O1

rbgfyT dV

F �
�
@O1

ft � n ds

where U is a global vector containing all nodal values
of u and v. The assembled global matrix equations are
stored in the skyline form and solved using the Gaus-

sian elimination method. The successive substitution
method is applied for nonlinear iteration and the time
derivatives are approximated using the implicit ®nite

di�erence scheme.

3.4. Numerical procedures

Computer codes are developed for the above ®nite
element and boundary element formulations. Numeri-
cal details are given in other publications [17,18,21]. A

variety of element types is available in the programs.
The elliptical integrals in the boundary integral formu-
lation are calculated using the formulae given in [19]

and the boundary element terms involving singularity
are calculated analytically, following a similar pro-
cedure as described by Li and Evans [20].

The algorithm entails the calculation of surface pro-
®les and both transient and state steady thermal and
¯uid ¯ow ®elds. The computation of the free surface
shapes of a droplet levitated in an electrostatic ®eld

requires an iterative procedure. To simplify the calcu-
lations dynamic pressure is neglected, and thus only
the balance between the surface tension and electro-

static pressure is considered (see Eq. (24)). To deter-
mine dynamic pressure and the viscous ¯ow e�ect and
to check the validity of Eq. (24), calculations of free

surface deformation with ¯uid ¯ow included were also
made for a selection number of cases. Results show
that the dynamic pressure and viscous stresses together
contribute less than 2% for the cases studied, but their

inclusion increases the computational time substan-
tially, since the ¯uid ¯ow ®eld has to be now included
in the iteration loop. Thus, for the cases presented

below, Eq. (24) was used and the dynamic pressure
and viscous stresses were neglected. The iteration for
shape calculations starts with a guessed free surface

shape, then the calculation of the electric ®eld and
hence the electrostatic pressure along the surface. Eqs.
(23)±(25) are solved with the input of the electrostatic
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pressure distribution, for the free surface shape. The
calculated shape is fed back to determine an updated
distribution of the electrostatic pressure, which in turn

is used to obtain an updated free surface shape of the
droplet. This iterative procedure continues until the
unknowns converge within a preset tolerance [19].

With the shape so determined, the thermal and ¯uid
¯ow ®elds are then computed using the ®nite element
method described above.

4. Results and discussion

The computational algorithms developed above
enable the prediction of the electric ®eld distribution,
the electric pressure distribution along the surface of a

droplet, droplet shapes, temperature distribution and
internal convection within the droplets driven by sur-
face tension and buoyancy forces in normal gravity. A

selection of computed results is presented for some
typical materials being considered for microgravity ap-
plications. Unless otherwise indicated, the compu-

tations used the physical properties and parameters as
given in Table 1[23]. It is noted that Qc is the critical
charge as predicted by Rayleigh's theory [22], above
which a charged drop becomes unstable and starts to

break into smaller droplets. The boundary element and
®nite element meshes used for the computation are il-
lustrated in Fig. 2. A total of 48 linear boundary el-

ements (as designated by heavy dots in Fig. 2) was
used. The thermal and ¯uid ¯ow calculations used 264
nine-node elements, with penalty formulation for press-

ure, and the density of the mesh was increased near
the free surface to ensure accuracy. A convergence cri-
terion of 1 � 10ÿ4 was set for relative error associated

with unknowns for free surface shapes, temperature
and velocity. Di�erent meshes and di�erent mesh dis-
tributions were also used to check the mesh depen-

Table 1

Parameters used in calculations

Metal Cu Fe Ni Zr Ga Si

Tmelt (K) 1357.8 1809 1728 2125 302.7 1685

Q0 (W/m2) 0.7� 106 2.5� 106 2.0� 106 4.5� 106 103 1.5� 106

ad (mm) 1.8 1.8 1.8 1.8 1.8 2.5

al (mm) 0.9 0.9 0.9 0.9 0.9 1.25

r (kg/m3) 8000 7015 7905 5800 6090 2510

m (kg/m s) 4� 10ÿ3 5.5� 10ÿ3 4.9� 10ÿ3 8.0� 10ÿ3 2.04� 10ÿ3 0.94� 10ÿ3

g (N/m) 1.285 1.872 1.778 1.480 0.718 0.864

dg=dT (N/m K) ÿ1.3� 10ÿ4 ÿ4.9� 10ÿ4 ÿ3.8� 10ÿ4 ÿ2.0� 10ÿ4 ÿ1.0� 10ÿ4 ÿ1.3� 10ÿ4

K (W/m K) 176.3 78.2 88.5 22.6 39.2 138.5

Cp (J/kg K) 495 795 620 289 389 1040

E (V/m) 3� 106 3� 106 3� 106 3� 106 2� 106 2.5� 106

Qc/e0 (Cm/F) 731.2 882.5 860.1 784.7 546.6 981.4

Emisivity e 0.3 0.3 0.3 0.3 0.3 0.3

b (Kÿ1) 20.3� 10ÿ6 14.6� 10ÿ6 16.3� 10ÿ6 5.9� 10ÿ6 18.3� 10ÿ6 7.6� 10ÿ6

Pr 1.123� 10ÿ2 5.591� 10ÿ2 3.433� 10ÿ2 10.23� 10ÿ2 2.024� 10ÿ2 0.706� 10ÿ2

Fig. 2. Finite element mesh and boundary element discretiza-

tion for numerical computations.
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dency. The ®nal mesh (see Fig. 2) used for the compu-
tations was determined such that any further re®ne-

ment of the mesh produces an error smaller than 0.1%
(relative to the ®nal mesh).
Before they are applied to compute the results rel-

evant to electrostatic levitation, the computer codes
are checked against available solutions. For boundary
element calculations, we consider an electrically con-

ducting droplet of a perfect sphericity that is positively
charged and immersed in a uniform electric ®eld. For
this idealized situation, an analytical solution may be

obtained via the classical separation-of-variable
method. The surface charge density distribution
induced on the sphere by the applied electric ®eld is a
function of the applied electric ®eld strength and varies

along the surface. The analytical expression for this
®eld quantity may be written as follows [15],

se�y� � Q=4pa 2
d � 3e0E0 cos y �33�

Fig. 3 compares the surface charge distribution
obtained from the boundary formulation with the ana-

lytical solution given by Eq. (33) for the conducting
sphere. Excellent agreement is obtained between the
numerical and analytical solutions, thereby providing a
validation of the boundary element formulation. The

free surface deformation calculations and the ¯uid ¯ow
calculations were also checked with available analytical
solutions for meniscus wetting near a vertical wall [24]

and surface tension driven ¯ows in a simple cavity
[16]. The codes were also checked with numerical sol-
utions obtained using other commercial codes. For all

the tested cases, the comparison between our codes

and others has the same or nearly the same accuracy
as appears in Fig. 3 or matches within the machine's

accuracy.

4.1. Droplet shapes

For a droplet to be levitated in normal gravity, the
total force acting on it must be zero, that is, the grav-

ity force must be balanced by the total Coulomb force
acting on the droplet, viz.,

mdg � ÿR@OPen � ẑ ds � E0Q �34�

While a larger Q gives a bigger Coulomb force, there
is an upper limit of Q for a droplet of given size and
material (see Table 1), above which the shape of a

droplet becomes unstable [22]. In selecting the electric
®eld, its value should also be smaller than the breakout
point for the gas environment. To circumvent this

problem, a majority of the electrostatic levitation
processes is carried out in a high vacuum environment.
While Eq. (34) represents the global balance that

must be satis®ed for a droplet to be levitated against
gravity under terrestrial conditions, a local balance is
required of forces involving gravity, electric pressure,
and surface tension along the free surface of the

droplet. The algorithm presented in Section 3.2 allows
us to predict the pro®le of the free surface of a droplet
when it is in mechanical equilibrium. Fig. 4 shows a

Fig. 4. Free surface pro®les of a Cu droplet, electrostatically

levitated in normal gravity: (1) E0 � 4� 106 V/m and

Q � 0:3475� 10ÿ9 C; (2) E0 � 3� 106 V/m and

Q � 0:463� 10ÿ9 C; (3) E0 � 2� 106 V/m and

Q � 0:695� 10ÿ9 C; (4) un-deformed liquid sphere.

Fig. 3. Comparison of analytical and numerical solutions for

the surface charge distribution in an electrically conducting

sphere immersed in a uniform electric ®eld.
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set of the computed results for the free surface pro®les
of a copper droplet levitated in electric ®elds. In

obtaining the results, Q and E0 are chosen such that
the above criterion for the global force balance (Eq.
(34)) is met and that Q is smaller than Qc: The shape

of the initial un-deformed sphere is also plotted as a
comparison. Examination of Fig. 4 illustrates that an
electrostatically levitated droplet in normal gravity

assumes a blob shape whose lower half surface is rela-
tively ¯at. Numerical simulations with di�erent applied
conditions were also carried out. A di�erent combi-

nation of Q and E0, while maintaining the global bal-
ance, results in di�erent equilibrium free surface
pro®les. For some cases, the droplet is deformed into a
blob shape very similar to a rain drop during free fall

[25]. When an increase in the electric ®eld and a corre-
sponding decrease in the applied charge occur simul-
taneously, the droplet becomes more elongated.

In microgravity, the electric forces are designed to
position and con®ne a droplet because otherwise it
would drift around in space, making it di�cult to con-

duct meaningful measurements. The positioning is
achieved by the concept of electrostatic levitation and
a sophisticated feedback control mechanism [1]. Fig. 5

depicts a set of computed results for the free surface
deformation of a droplet electrostatically positioned in
microgravity. Since a net lifting force is not needed,
the total net charge is equal to zero. However, as the

droplet is placed in the electric ®eld, the electric ®eld is

perturbed and induces surface charges on the droplet.
These induced surface charges interact with the

imposed electric ®eld to ensure that the electric ®eld
inside the droplet is zero or the entire droplet is at a
constant potential. Though the net force is zero, the

local electric force along the surface is not, and must
be balanced by the surface tension force, thereby de®n-
ing a free surface pro®le for the droplet. Because the

surface charges are negative on the lower half surface
and positive on the upper half surface, they combine
with an upward electric ®eld to produce a force that

pulls the surface away from the center. Moreover, the
surface charges are symmetrically distributed because
of the symmetry of the applied electric ®eld. As a con-
sequence, the droplet deforms symmetrically outward

from the equator plane. A greater applied electric ®eld
results in a bigger surface charge, and hence a bigger
pulling force. As such, a larger free surface defor-

mation occurs with a droplet in a stronger electric
®eld, as shown in Fig. 5.
To better assess the shape di�erence between normal

gravity and microgravity, the electrostatically deformed
free surface pro®les are plotted in Fig. 6 for a Cu
droplet, which has a diameter of 5 mm when un-

deformed. Clearly, in the case of normal gravity, the
droplet assumes a blob shape. The lower part of the
surface is ¯atter and the droplet points upward or in
the direction opposite to the acceleration of gravity.

This should not come as a surprise since the local elec-

Fig. 6. Comparison of free surface pro®les of a Cu droplet in

normal and microgravity: (1) E0 � 3:3� 106 V/m and

q � 1:56� 10ÿ9 C (normal gravity); (2) E0 � 3:3� 106 V/m

and Q � 0 C (microgravity gravity); (3) un-deformed liquid

sphere.

Fig. 5. Free surface deformation of a Cu droplet electrostati-

cally positioned in microgravity �Q � 0): (1) E0 � 4� 106 V/

m; (2) E0 � 3� 106 V/m; (3) E0 � 2� 106 V/m; (4) un-

deformed liquid sphere.
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trostatic force points outward and tends to elongate
the droplet in the two pole directions. With reference

to Fig. 3, the surface charge attains a higher value on
the upper surface than on the lower surface and thus a
stronger pulling action results from the electric ®eld,

thereby giving rise to the ®nal blob shape as shown in
Fig. 6. In microgravity, the charge distribution is sym-
metric and thus the surface deformation is symmetric

with respect to the equator plane.

4.2. Temperature distribution and internal convection

Let us now turn to the ¯uid ¯ow and heat transfer

aspects of an electrostatically levitated droplet. For an
electrically conducting melt, the Maxwell stress is nor-
mal to the surface and there exist no tangential shear
stress components. Because this stress ®eld is non-vor-

tical in nature, it generates no ¯uid motion in the

droplet [4,5]. However, since the droplet is heated by
laser beams at the two poles, a non-uniform tempera-
ture distribution arises in the droplet. For a droplet
whose surface tension is a function of temperature

such as those in Table 1, the non-uniform temperature
distribution creates a non-uniform tangential stress on
the surface of the droplet, which sets the ¯uid in

motion [16].
Fig. 7 shows the temperature distribution and the

¯uid ¯ow ®eld inside a Cu droplet levitated in micro-

gravity. The laser heating of the north and south pole
regions gives rise to a symmetric temperature distri-
bution in the droplet, as expected. A temperature

di�erence of approximately 3 deg exists in the droplet,
with the maximum temperatures at the poles. The tem-
perature decreases from the poles to the equator

Fig. 7. Thermal contour and recirculating convection in a Cu droplet levitated in an electric ®eld.
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region, where the minimum temperature occurs. The
temperature contour suggests that thermal transport in

the droplet is primarily due to conduction and the in-
ternal convection hardly a�ects the thermal behavior.
This is anticipated because the Prandtl number for Cu

is small (see Table 1) and thermal di�usion predomi-
nates advection. The temperature di�erence causes a
recirculating convection in the droplet such that the

¯uid particle moves from the high temperature region
to the low temperature region on the surface, and
inside the droplet moves from equator towards the

pole regions. This ¯uid ¯ow behavior may be explained
below. Since the surface tension of Cu decreases with
increasing temperature, a higher surface tension exists
near the equator. The higher surface tension exerts a

higher pulling force on the ¯uid element on the surface
and thus drags the ¯uid towards that region from the
lower surface tension (or higher temperature) part of

the surface. To satisfy the ¯ow continuity, the mass
within the Cu droplet moves up from the equator to
the pole regions, thereby forming an internal recircu-

lating ¯ow pattern.

Computed results show that a large temperature gra-
dient and a higher ¯ow velocity occur for a droplet

with a high melting point for the same heating con-
®guration. Fig. 8 illustrates the temperature distri-
bution and ¯uid ¯ow in a liquid Zr droplet in

microgravity. The symmetric surface deformation is
evident and is calculated using the free surface algor-
ithm as described above. For this case, a temperature

di�erence of 74 K exists in the droplet, and maximum
velocity is as high as 25.41 cm/s. Experience with elec-
trostatic levitation has indicated that a temperature

di�erence of 50±80 K may exist in materials with a
high melting point. This is supported by the calcu-
lations presented. In comparison with the results for
the Cu droplet, the temperature contour clearly

suggests that internal convection a�ects thermal trans-
port in the droplet. Additional calculations showed
that both maximum velocity and maximum/minimum

temperature di�erence �DT� in the Zr droplet increase
approximately linearly with the applied laser heating
power �Q0), as appears in Fig. 9. A similar linear re-

lationship is found also for other materials in Table 1.

Fig. 8. Temperature distribution and recirculating Marangoni convection in a Zr droplet in an electrostatic ®eld.
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The maximum velocity and temperature di�erences

in droplets of other materials under consideration were
also calculated and the results are summarized in
Table 2. The computational procedures are the same

as described above for the Cu and Zr droplets in that,
®rst the free surface pro®les are computed, followed by
the calculations for the temperature and ¯uid ¯ow
®elds. The thermal and velocity distributions are very

similar to those described above.
Calculations of droplet surface deformations and

thermal and ¯uid ¯ow ®elds were also carried out for

the materials under terrestrial conditions. The com-
puted temperature contour and velocity pro®les are
very similar to those in microgravity and key results

are given in Table 3. Comparison of Tables 2 and 3 in-
dicates that for all cases considered here, buoyancy
e�ects on the ¯uid ¯ow are very small and internal
¯ow in the electrostatically levitated droplets is primar-

ily attributed to surface tension force gradients.

These results clearly suggest that to minimize in-

ternal convection, a more uniform temperature distri-
bution is required, which in turn requires an
appropriately distributed heating source. One of the

simplest ways to better distribute the present heating
source would be to increase the size of the laser beam.
One such result is shown in Fig. 10, where the laser
beam is assumed to cover the entire sphere (i.e.

al � ad). Clearly, the temperature di�erence is reduced
by a factor of 7, which results in an almost four fold
reduction in the maximum velocity. Compared with

Fig. 8, the thermal contour is also di�erent and shows
a relatively smaller e�ect of convection on the tem-
perature distribution.

Knowledge of the decay of both temperature and vel-
ocity ®elds in a levitated droplet, as it cools into an
undercooling region, is crucial for the design of exper-
iments for testing the fundamental solidi®cation theory.

In practice, when levitation is stabilized and the sample

Fig. 9. Dependency of the maximum velocity and the maximum temperature di�erence on laser heating power.

Table 2

Results for micro-gravity condition

Metal Cu Fe Ni Zr Ga Si

DT (K) 2 15 13 74 0.02 10

Tmin ÿ Tmax (K) 1384±1386 1880±1895 1780±1793 2176±2250 337.51±337.53 1704±1714

Vmax (cm/s) 2.309 17.16 13.01 25.41 0.0324 20.88

Re 83.1 394 377.8 322.5 1.74 1393.7

Ma 2.63 171.5 100.5 247 0.11 140.4
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is heated to a designated temperature, the laser beam is

turned o� and the sample is allowed to cool below its
melting point by losing heat to the environment. The
computational methodology discussed above may be

applied to predict the dynamic development of these
transient thermal and ¯uid ¯ow ®elds in electrostatically
levitated droplets as they undergo undercooling.

Fig. 11 illustrates a set of snap shots of the time

evolving velocity and temperature ®elds in a Zr droplet
when the laser power is switched o� and the droplet is
allowed to cool approximately 200 K below the melt-

ing point. The calculations began with the initial vel-
ocity and temperature ®elds shown in Fig. 8. This set
of results illustrates that the radiative loss of heat to

Table 3

Results for normal gravity condition

Metal Cu Fe Ni Zr Ga Si

DT (K) 3 15 13 74 0.01 10

Tmin ÿ Tmax (K) 1384±1387 1880±1895 1780±1793 2176±2250 337.60±337.61 1705±1715

Tmelt (K) 1357.8 1809 1728 2125 302.7 1685

Vmax (cm/s) 2.304 17.15 13.00 25.41 0.0326 21.04

s=e0 72.2 63.29 71.32 52.33 78.5 72.8

Re 83.2 393.8 377.5 322.9 1.75 1404.6

Ra 0.158 1.14 1.08 1.34 0.0019 0.059

Ma 2.63 171.5 100.5 247 0.11 140.4

Fig. 10. Temperature distribution and internal velocity ®eld in a Zr droplet with a larger laser heating beam diameter �al � 1:8
mm, Q0 � 0:67� 106 w/m2) in microgravity.
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Fig. 11. Dynamic development of temperature and internal convection ®elds in a Zr droplet as it undergoes undercooling in micro-

gravity: (a) t � 0:01 s; (b) t � 0:2 s; (c) t � 0:4 s; (d) t � 0:8 s.
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the surroundings eventually results in temperature at
the poles being lower and that at its center being

higher. The temperature gradient along the surface
also evolves such that the temperature at the equator-
ial gradually changes from being lower to higher than

that at the two poles. This is more clearly illustrated in
Fig. 12, where the temperature distribution along the
droplet surface is plotted. This dynamic change in tem-

perature leads to the evolution of the ¯uid ¯ow ®eld in
the droplet. On the surface, the tangential velocity
reverses its direction when the temperature at the

equator plane becomes higher than that at the poles,
as evidenced by the change of distribution of the tan-
gential velocity with time, along the droplet surface
that appears in Fig. 13. Examination of Fig. 11 shows

that the ¯ow near the surface reverses its direction of
rotation at some point in time after cooling takes
place. At this point two anti-rotating recirculating

loops emerge in the droplet. The outer loop develops
because the temperature at the poles is cooled below
that at the equator plane, and hence the ¯uid particles

are driven by the surface tension forces from the
equator to the poles along the surface. The inner loop,
on the other hand, is a carry-over from the initial ¯ow

®eld and is not sustainable. It becomes weaker and
shrinks as the droplet gets cooler. Eventually, the inner
loop loses its strength entirely and is engulfed by the
outer loop.

Analytical solutions were obtained for the tempera-
ture decaying in levitated droplets [12,25]. The sol-

utions were derived for magnetically levitated droplets
by assuming that the droplets maintain sphericity and

that the radiation boundary condition may be simpli-
®ed to a Newton cooling boundary condition with an
appropriate heat transfer coe�cient. They may be

adopted here for approximating the transient thermal
and ¯uid ¯ow ®elds in electrostatically levitated
droplets by simply dropping out the terms associated

with magnetic ®eld e�ects, of course still subject to the
geometric and thermal boundary condition restrictions.
These analytical solutions are plotted in Fig. 14, along

with the numerical results for the temperatures at
some speci®c points. In calculating the thermal decay
analytically, the heat transfer coe�cient was evaluated
using the average temperature between the initial and

®nal temperatures. Numerical results plotted in Fig. 14
show that the temperature at the poles decays rapidly
soon after cooling starts but the cooling rate decreases

with time afterwards. The analytical solutions failed to
predict the rapid change in temperature but gave
nearly the same cooling rate as that computed numeri-

cally after the initial rapid decay. At the point where
the laser beam was not present (r = 1.72 mm, z = 0.),
the analytical and numerical results for the cooling

curve match reasonably well for the entire cooling
period. This and other similar comparisons suggest
that the analytical solutions may be used to approxi-
mately estimate the thermal decay at the points that in-

itially were not heated by laser beams.

Fig. 13. Evolution of tangential velocity along the surface of

the Zr droplet after the laser heating source in turned o�. S is

measured from the north pole to the equator. Legends: (1)

t � 0 s; (2) t � 0:01 s, (3) t � 0:2 s; (4) t � 0:4 s, (5) t � 0:6 s;

(6) t � 0:8 s.

Fig. 12. Transient temperature distribution along the surface

of the Zr droplet as it is cooled below its melting point in

microgravity. S is measured from the north pole to the

equator. Legends: (1) t = 0 s, (2) t = 0.01 s; (3) t � 0:2 s; (4)

t � 0:4 s; (5) t � 0:6 s; (6) t � 0:8 s.
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5. Concluding remarks

This paper has presented a numerical study of sur-
face deformation, thermal convection and temperature
distribution in electrostatically levitated droplets. The

computational methodology is based on the boundary
element solution of electric potential outside the
droplet, the weighted residuals formulation of the free

surface balance equation involving electrostatic stresses
and surface tension, and the ®nite element solution of
the internal ¯uid ¯ow and temperature distribution in

the electrostatically deformed droplets. Computer pro-
grams were developed and were checked against avail-
able solutions. The results show that the droplet
deforms into an ellipsoidal shape under the action of

electrostatic normal stresses induced by the applied
electric ®eld in microgravity and into a blob shape
with the pointy side of the surface pointing upward in

normal gravity. Internal thermal convection is induced
by the temperature gradient caused by non-uniform
heating. The ¯ow is primarily attributed to surface ten-

sion forces and buoyancy e�ects are negligible. For the
cases studied, a larger temperature gradient is found in
the droplets with a higher melting point, which leads

to a stronger internal recirculation. The internal con-
vection can be substantially reduced when a more uni-
form heating source is applied. Both temperature and
¯uid ¯ow ®elds evolve drastically soon after the laser

beam is switched o� to cool the droplets into an
undercooled region. The temperature gradient along
the surface changes its sign as cooling continues, which

in turn causes the direction of the rotating, recirculat-
ing loop in the droplet to reverse. To realize a

quiescent levitation associated with electrostatic sys-
tems, careful design of the heating source is necessary
to minimize the temperature di�erence and thus the

Marangoni convection in the droplets.
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